Rambler's Top100

СНиП 2.02.02-85 Скачать Предварительный просмотр

Скачать

Предварительный просмотр

(отсутствуют изображения, таблицы и формулы)

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА
ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ
СНиП 2.02.02-85
РАЗРАБОТАНЫ ВНИИГ им. Б.Е. Веденеева (канд. техн. наук А.П. Пак - руководитель темы; кандидаты техн. наук А.Н. Марчук, Д.Д. Сапегин и Р.А. Ширяев; Т.Ф. Липовецкая; доктор техн. наук А.Л. Гольдин и А.А. Храпков; кандидаты техн. наук Э.А. Фрейберг и В.Н. Жиленков; д-р техн. наук Л.В. Горелик), институтом Гидропроект им. С.Я. Жука (канд. техн. наук Ю.А. Фишман; проф., д-р техн. наук Ю.К. Зарецкий; кандидаты техн. наук Ю.Б. Мгалобелов и И.С. Ронжин; А.Г. Осколков и Р.Р. Тиздель), институтом Гидроспецпроект (канд. техн. наук Л.И. Малышев; А.В. Попов) Минэнерго СССР, институтом Гипроречтранс Минречфлота РСФСР (проф., д-р техн. наук В.Б. Гуревич; канд. техн. наук В.Э. Даревский), Ленморниипроектом (кандидаты техн. наук Л.А. Уваров, Л.Ф. Златоверховников; и Ф.А. Мартыненко) и ОИИМФ Минморфлота СССР (проф., д-р техн. наук П.И. Яковлев), ЛПИ им. М.И. Калинина Минвуза РСФСР (проф., д-р техн. наук П.Л. Иванов; проф., канд. техн. наук А.Л. Можевитинов).
ВНЕСЕНЫ Минэнерго СССР.
ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главтехнормированием Госстроя СССР (О.Н. Сильницкая и В.А. Кулиничев).
С введением в действие СНиП 2.02.02-85 "Основания гидротехнических сооружений" с 1 января 1987 г. утрачивает силу СНиП II-16-76 "Основания гидрoтеxнических сооружений".
При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале "Бюллетень строительной техники", "Сборник изменений к строительным нормам и правилам" Госстроя СССР и информационном указателе "Государственные стандарты СССР" Госстандарта.

Строительные нормы и правила
СНиП 2.02.02-85
Госстрой СССР
Основания гидротехнических сооружений
Взамен СНиП II-16-76
Настоящие нормы распространяются на проектирование оснований гидротехнических сооружений речных, морских и мелиоративных.
При проектировании оснований гидротехнических сооружений, предназначенных для строительства в сейсмических районах, в условиях распространения вечномерзлых, просадочных, пучинистых, набухающих, биогенных, засоленных грунтов и карста, следует соблюдать также нормы и правила, предусмотренные соответствующими нормативными документами, утвержденными или согласованными с Госстроем СССР.
Настоящие нормы не распространяются на проектирование подземных гидротехнических сооружений и водохозяйственных сооружений на мелиоративных каналах с расходами воды менее 5 м3/с, а также при глубинах воды менее 1 м.
Примечание. Под основанием следует понимать область грунтового массива (в том числе береговые примыкания, откосы и склоны), которая взаимодействует с сооружением и в которой в результате возведения и эксплуатации сооружения изменяются напряженно-деформированное состояние и фильтрационный режим.
Внесены Минэнерго СССР
Утверждены постановлением Государственного комитета СССР по делам строительства от 12 декабря 1985 г. ( 219
Срок введения в действие 1 январи 1987 г.
1.ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Основания гидротехнических сооружений следует проектировать на основе и с учетом:
результатов инженерно-геологических и гидрогеологических изысканий и исследований, содержащих данные о структуре, физико-механических и фильтрационных характеристиках отдельных зон массива грунта, уровнях воды в грунте, областях ее питания и дренирования;
данных о сейсмической активности района возведения сооружения;
опыта возведения гидротехнических сооружений в аналогичных инженерно-геологических условиях;
данных, характеризующих возводимое гидротехническое сооружение (типа, конструкции, размеров, порядка возведения, действующих нагрузок, воздействий, условий эксплуатации и т. д.);
местных условий строительства;
технико-экономического сравнения вариантов проектных решений и принятия оптимального варианта, обеспечивающего рациональное использование прочностных и деформационных свойств грунтов основания и материала возводимого сооружения при наименьших приведенных затратах.
1.2. При проектировании оснований гидротехнических сооружений должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях их строительства и эксплуатации. Для этого при проектировании следует выполнять:
оценку инженерно-геологических условий строительной площадки и прогноз их изменения;
расчет несущей способности основания и устойчивости сооружения;
расчет местной прочности основания;
расчет устойчивости естественных и искусственных склонов и откосов, примыкающих к сооружению;
расчет деформаций системы сооружение - основание в результате действия собственного веса сооружения, давления воды, грунта и т. п. и изменения физико-механических (деформационных, прочностных и фильтрационных) свойств грунтов в процессе строительства и эксплуатации сооружения, в том числе с учетом их промерзания и оттаивания;
определение напряжений в основании и на контакте сооружения с основанием и их изменений во времени;
расчет фильтрационной прочности основания, противодавления воды на сооружение и фильтрационного расхода, а также при необходимости - объемных фильтрационных сил и изменения фильтрационного режима при изменении напряженного состояния основания;
разработку инженерных мероприятий, обеспечивающих несущую способность оснований и устойчивость сооружения, требуемую долговечность сооружения и его основания, а также при необходимости - уменьшение перемещений, улучшение напряженно-деформированного состояния системы сооружение - основание, снижение противодавления и фильтрационного расхода.
1.3. По материалам инженерно-геологических изысканий и исследований должны быть установлены происхождение грунтов основания, их структура, физико-механические и фильтрационные свойства, гидрогеологическая обстановка и т.п. На основе этих данных должны составляться инженерно-геологические и расчетные схемы (модели) основания.
Примечание. Если между временем завершения изысканий и началом строительства перерыв составил более пяти лет, следует, как правило, проводить дополнительные инженерно-геологические изыскания и исследования.
1.4. Нагрузки и воздействия на основание должны определяться расчетом исходя из совместной работы сооружения и основания в соответствии с требованиями СНиП II-50-74.
При расчетах основания коэффициенты надежности по степени ответственности принимаются такими же, как для возводимого на нем сооружения.
1.5. Расчеты оснований гидротехнических сооружений следует производить по двум группам предельных состояний.
Расчеты по первой группе должны выполняться с целью недопущения следующих предельных состояний:
потери основанием несущей способности, а сооружением - устойчивости;
нарушений общей фильтрационной прочности нескальных оснований, а также местной фильтрационной прочности скальных и нескальных оснований в тех случаях, когда они могут привести к появлению сосредоточенных водотоков, локальным разрушениям основания и другим последствиям, исключающим возможность дальнейшей эксплуатации сооружения;
нарушений противофильтрационных устройств в основании или их недостаточно эффективной работы, вызывающих недопустимые потери воды из водохранилищ и каналов или подтопление и заболачивание территорий, обводнение склонов и т. д.;
неравномерных перемещений различных участков основания, вызывающих разрушения отдельных частей сооружений, недопустимые по условиям их дальнейшей эксплуатации (нарушение ядер, экранов и других противофильтрационных элементов земляных плотин и дамб, недопустимое раскрытие трещин бетонных сооружений, выход из строя уплотнений швов и т.п.).
По предельным состояниям первой группы следует также выполнять расчеты прочности и устойчивости отдельных элементов сооружений, а также расчеты перемещений конструкций, от которых зависит прочность или устойчивость сооружения в целом или его основных элементов (например, анкерных опор шпунтовых подпорных стен).
Расчеты по второй группе должны выполняться с целью недопущения следующих предельных состояний:
нарушений местной прочности отдельных областей основания, затрудняющих нормальную эксплуатацию сооружения (повышения противодавления, увеличения фильтрационного расхода, перемещений и наклона сооружений и др.) ;
потери устойчивости склонов и откосов, вызывающих частичный завал канала или русла, входных отверстий водоприемников и другие последствия;
проявлений ползучести и трещинообразования грунта.
Примечание. Если потеря устойчивости склонов может привести сооружение в состояние, непригодное к эксплуатации, расчеты устойчивости таких склонов следует производить по предельным состояниям первой группы.
1.6. При проектировании оснований сооружений I-III классов необходимо предусматривать установку контрольно-измерительной аппаратуры (КИА) для проведения натурных наблюдений за состоянием сооружений и их оснований как в процессе строительства, так и в период их эксплуатации для оценки надежности системы сооружение - основание, своевременного выявления дефектов, предотвращения аварий, улучшения условий эксплуатации, а также для оценки правильности принятых методов расчета и проектных решений. Для сооружений IV класса и их оснований, как правило, следует предусматривать визуальные наблюдения.
Пpимечания: 1. Для портовых сооружений III класса при обосновании установку КИА допускается не предусматривать.
2. Установка КИА на сооружениях IV класса и их основаниях допускается при обосновании в сложных инженерно-геологических условиях и при использовании новых конструкций сооружений.
1.7. Состав и объем натурных наблюдений должны назначаться в зависимости от класса сооружений, их конструктивных особенностей и новизны проектных решений, геологических, гидрогеологических, геокриологических, сейсмических условий, способа возведения и требований эксплуатации. Наблюдениями, как правило, следует определять:
осадки, крены и горизонтальные смещения сооружения и его основания;
температуру грунта в основании;
пьезометрические напоры воды в основании сооружения;
расходы воды, фильтрующейся через основание сооружения;
химический состав, температуру и мутность профильтровавшейся воды в дренажах, а также в коллекторах;
эффективность работы дренажных и противофильтрационных устройств;
напряжения и деформации в основании сооружения;
поровое давление в основании сооружения;
сейсмические воздействия на основание.
Для сооружений IV класса инструментальные наблюдения, если они предусмотрены проектом, допускается ограничить наблюдениями за фильтрацией в основании, осадками и смещениями сооружения и его основания.
1.8. При проектировании оснований гидротехнических сооружений должны быть предусмотрены инженерные мероприятия по защите прилегающих территорий от затопления и подтопления, от загрязнения подземных вод промышленными стоками, а также по предотвращению оползней береговых склонов.
2. НОМЕНКЛАТУРА ГРУНТОВ ОСНОВАНИЙ И ИХ ФИЗИКО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
2.1. Номенклатуру грунтов оснований гидротехнических сооружений и их физико-механические характеристики следует устанавливать согласно требованиям ГОСТ 25100-82, СНиП 2.02.01-83 и с учетом указаний настоящего раздела.
Значения физико-механических характеристик грунтов, приведенные в ГОСТ 25100-82, в табл. 1 и в рекомендуемом приложении 1, следует рассматривать как классификационные. На основе их сравнения с нормативными значениями характеристик по предварительным (начальным) результатам испытаний следует устанавливать принадлежность грунта к тому или иному классу и подгруппе. По этим данным следует производить оценку общих инженерно-геологических условий строительства и устанавливать состав и методы определения характеристик и расчетов оснований. При этом для сильнодеформируемых [при Е < 1(103 МПа (10(103 кгс/см2)], легковыветриваемых, сильно-трещиноватых, размокающих и набухающих под воздействием воды полускальных грунтов следует применять состав и методы определения их физико-механических характеристик и расчетов, соответствующие как скальным, так и нескальным грунтам.
2.2. Инженерно-геологические условия строительства должны конкретизироваться и детализироваться путем построения инженерно-геологических и геомеханических (расчетных или физических) моделей (схем) основания с установлением для различных зон нормативных и расчетных характеристик физико-механических свойств грунтов.
2.3. Для проектирования оснований гидротехнических сооружений в необходимых случаях надлежит определять дополнительно к предусмотренным СНиП 2.02.01-83 следующие физико-механические характеристики грунтов:
коэффициент фильтрации k;
удельное водопоглощение q;
показатели фильтрационной прочности грунтов (местный и осредненный критические градиенты напора и и критические скорости фильтрации ;
коэффициент уплотнения a;
содержание водорастворимых солей;
параметры ползучести и
параметры трещин (модуль трещиноватости Мj, углы падения и простирания , длину , ширину раскрытия );
параметры заполнителя трещин (степень заполнения, состав, характеристики свойств);
скорости распространения продольных и поперечных волн в массиве;
коэффициент морозного пучения Кh;
удельную нормальную и касательную силы пучения и ;
предел прочности отдельности (элементарного породного блока) скального грунта на одноосное сжатие Rс;
предел прочности отдельности скального грунта на одноосное растяжение Rt;
Таблица 1

Физико-механические характеристики грунтов
Классификационная характеристика грунтов основания
плотность сухого грунта (в массиве) -,
т/м3
коэффициент пористости (в массиве), е
сопротивление одноосному paстяжению породных блоков в водонасыщенном состоянии ,Мпа
(кгс/см2)
модуль деформации грунта (в массиве) Е, 103 МПа (103 кгс/см2)
А. Скальные




Скальные [ при пределе прочности на одноосное сжатие отдельности Rс5 МПа (50кгс/см2)]: магматические (граниты, диориты, порфириты и др.); метаморфические (гнейсы, кварциты, кристаллические сланцы, мраморы и др.) ; осадочные (известняки, доломиты, песчаники и др.)
От 2,5 до 3,1
Менее 0,01
1(10) и более
Св. 5 (50)
Полускальные [ при Rс<5 МПа (50кгс/см2)]: осадочные (глинистые, сланцы, аргиллиты, алевролиты, песчаники, конгломераты, мелы, мергели, туфы, гипсы и др.)
От 2,2 до 2,65
Менее 0,2
Менее 1 (10)
От 0,1 до 5 (от 1 до 50)
Б. Нескальные




Крупнообломочные (валунные, галечниковые, гравийные); песчаные
От 1,4 до 2,1
От 0,25 до 1
--
От 0,005 до 0,1
(от 0,05 до 1)
Пылевато-глинистые (супеси, суглинки и глины)
От 1,1 до 2,1
От 0,35 до 4
-
От 0,003 до 0,1
(от 0,03 до 1)
предел прочности массива скального грунта на смятие ;
то же, на одноосное сжатие ;
то же, на одноосное растяжение ;
коэффициент упругой водоотдачи грунта ;
коэффициент гравитационной водоотдачи грунта .
При необходимости должны определяться и другие характеристики грунтов.
Физико-механические характеристики грунта должны определяться для инженерно-геологических элементов основания, которыми могут быть выделенные (при составлении инженерно-геологических моделей, при разработке расчетных схем или геомеханических моделей) квазиоднородные области основания или некоторые квазиоднородные элементы этих областей (например, выделенные области массива скального грунта или отдельности скального грунта, его трещины, контактные поверхности с другими областями основания или сооружения).
Однородность условий определения физико-механических характеристик должна оцениваться на основе анализа инженерно-геологических данных и на основе статистической проверки.
Нормативные и расчетные значения tg, с, Rс, Rt, Rс,m, Rt,m, Rcs,m, E (модуля деформации), (коэффициента поперечной деформации), a, ,,,k, q,,,, и должны устанавливаться в соответствии с требованиями настоящих норм, а остальных характеристик - в соответствии с требованиями СНиП 2.02.01-83 и государственных стандартов на определение соответствующих характеристик.
2.4. Физико-механические характеристики грунтов необходимо определять с целью использования их значений при классификации грунтов основания, при определении с помощью функциональных или корреляционных зависимостей одних показателей через другие и при решении регламентированных п. 1.2 задач проектирования основания.
При классификации грунтов применяются нормативные значения характеристик, при решении задач проектирования - их расчетные значения.
2.5. Нормативные значения характеристик грунтов Хn должны устанавливаться на основе результатов полевых и лабораторных исследований, проводимых в условиях, максимально приближенных к условиям работы грунта в рассматриваемой системе сооружение - основание. За нормативные значения всех характеристик следует принимать их средние статистические значения.
Расчетные значения характеристик грунтов Х должны определяться по формуле
(1)
где - коэффициент надежности по грунту.
Примечания: 1. В оговоренных ниже случаях расчетные значения характеристик могут определяться по табличным или аналоговым данным.
2. Расчетные значения характеристик грунтов tg, с, и R для расчетов по предельным состояниям первой группы обозначаются tg, сI, и RI, второй группы - tg, сII, и RII.


ХАРАКТЕРИСТИКИ НЕСКАЛЬНЫХ ГРУНТОВ
2.6. Нормативные значения характеристик tg и сn следует определять по совокупности парных значений нормальных и предельных касательных напряжений, полученных методом среза (сдвига), или парных предельных значений максимальных и минимальных главных напряжений, полученных методом трехосного сжатия.
Метод трехосного сжатия должен, как правило, применяться для пылевато-глинистых грунтов с показателем текучести IL > 0,5, в том числе для получения характеристик в нестабилизированном состоянии (см. п. 3.13). При обосновании для определения характеристик в нестабилизированном состоянии допускается применение метода быстрого среза (сдвига).
Для грунтов всех типов оснований речных гидротехнических сооружений I класса следует использовать метод трехосного сжатия. Метод среза для этих случаев допускается применять только при обосновании.
Для грунтов всех типов оснований сооружений I-III классов дополнительно к испытаниям указанными лабораторными методами, как правило, следует проводить также испытания в полевых условиях методом сдвига штампов (для бетонных и железобетонных сооружений), методом сдвига грунтовых целиков (для грунтовых сооружений), а также допускается проводить испытания методами зондирования и вращательного среза (для всех видов сооружений). Испытания всеми указанными методами и определение по их результатам нормативных значений характеристик tgи сn следует проводить для условий, соответствующих всем расчетным случаям в периоды строительства и эксплуатации сооружения.
Нормативные значения характеристик tgи сn по результатам испытаний методами среза (сдвига) и трехосного сжатия следует определять в соответствии с обязательным приложением 2.
Нормативные значения характеристик tgи сn при применении методов вращательного среза или зондирования следует принимать равными средним арифметическим частных значений этих характеристик.
При получении методами среза (сдвига) для каждого фиксированного значения нормального напряжения не менее шести значений предельных касательных напряжений нормативные значения характеристик грунтов ненарушенной структуры tgи сn наряду с указанным выше способом допускается определять также методом, основанным на использовании корреляционных зависимостей, которые должны устанавливаться между предельными касательными напряжениями (при фиксированных нормальных напряжениях) и физическими характеристиками грунта с помощью статистической обработки результатов испытаний. Нормативные значения tgи сn при использовании этого метода следует определять по зависимости между нормальными и предельными касательными напряжениями, отвечающей наименее благоприятному из имевших место в опытах значению физической характеристики.
2.7. Расчетные значения характеристик tgи сI при использовании результатов испытаний, проведенных любым из указанных в п. 2.6 методов, следует вычислять по формуле (1), определяя коэффициент надежности по грунту в соответствии с обязательным приложением 2 при односторонней доверительной вероятности = 0,95 (за исключением случаев, когда нормативные значения tgи сn получены указанным в п. 2.6 способом с использованием корреляционных зависимостей).
Если полученное таким образом значение будет более 1,25 (для илов - 1,4) или менее 1,05, то его необходимо принимать соответственно равным = 1,25 (для илов - 1,4) или = 1,05.
Расчетные значения характеристик tgи сII следует принимать равными нормативным [ т. е. в формуле (1) принимать = 1].
Если нормативные значения характеристик tgи сn были определены по указанному в п. 2.6 методу с использованием корреляционных зависимостей, то расчетные значения характеристик tgи сI или tgи сII следует вычислять по формуле (1), полагая соответственно = 1,25 (для илов - 1,4) или = 1. Полученные таким образом значения tgи сI или tgи сII принимаются окончательно за расчетные в том случае, если они в рассматриваемом диапазоне напряжений (или на его части) обеспечивают большие значения расчетных предельных касательных напряжений, чем значения tgи сI или tgи сII, полученные указанным ранее способом (без использования корреляционных зависимостей).
Для оснований портовых сооружений III и IV классов при обосновании значения tgи сI допускается определять с использованием результатов испытаний аналогичных грунтов в зависимости от их минералогического и зернового состава, коэффициента пористости и показателя текучести, применяя методику, изложенную в обязательном приложении 2.
2.8. Нормативные значения модуля деформации Е и коэффициента уплотнения аn нескальных грунтов следует определять по результатам компрессионных испытаний или испытаний методом трехосного сжатия с учетом их напряженно-деформированного состояния. При использовании метода трехосного сжатия следует выполнять требования ГОСТ 26518-85. При использовании метода компрессионных испытаний следует выполнять указания п. 7.7. Значения Еn и an должны определяться как средние арифметические частных значений этих характеристик, полученных в отдельных испытаниях, или как значения, устанавливаемые по осредненным зависимостям измеряемых в опытах величин.
Расчетные значения модуля деформации E и коэффициента уплотнений а следует принимать равными нормативным.
Для оснований сооружений II-IV классов расчетные значения Е допускается принимать по таблицам, приведенным в СНиП 2.02.01-83, с введением коэффициента тc, принимаемого по обязательному приложению 3.
2.9. Нормативные значения коэффициентов поперечной деформации рекомендуется определять по результатам испытаний методом трехосного сжатия. Значения по результатам испытаний следует определять как средние арифметические частных значений этой характеристики, полученных в отдельных испытаниях, или как значения, устанавливаемые по осредненным зависимостям измеряемых в опытах величин.
Расчетные значения коэффициента поперечной деформации v следует принимать равными нормативным.
Расчетные значения коэффициента v при обосновании допускается принимать по табл. 2.
Таблица 2
Грунты
Коэффициент поперечной деформации v
Глины при:

IL<0
0,20-0,30
0< IL0,25
0,30-0,38
0,25< IL1
0,38-0,45
Суглинки
0,35-0,37
Пески и супеси
0,30-0,35
Крупнообломочные грунты
0,27
Примечание. Меньшие значения v принимаются при большей плотности грунта.

2.10. Нормативные значения параметров ползучести и определяются как средние арифметические частных значений этих характеристик и полученных для расчетов осадок по результатам компрессионных испытаний и для расчетов горизонтальных смещений по результатам сдвиговых испытаний. При этом испытания должны проводиться с фиксацией деформаций во времени на каждой ступени нагрузки. Частные значения и следует определять исходя из зависимости
(2)
где- частные значения деформации компрессионного сжатия (при компрессионных испытаниях) или деформации сдвига (при сдвиговых испытаниях) в момент времени t;
- частные значения мгновенной деформации компрессионного сжатия (при компрессионных испытаниях) или деформации сдвига (при сдвиговых испытаниях).
Расчетные значения и следует принимать равными нормативным.
2.11. За нормативное значение коэффициента фильтрации kn следует принимать среднее арифметическое частных значений коэффициента фильтрации грунта, определяемых путем испытаний его на водопроницаемость в лабораторных или полевых условиях с учетом структурных особенностей основания (в том числе возникающих после возведения сооружения). Например, при резко выраженной фильтрационной анизотропии грунта, когда его водопроницаемость изменяется в зависимости от направления более чем в 5 раз, необходимо определять коэффициенты фильтрации по главным осям анизотропии, указывая при этом ориентировку этих осей в пространстве.
Расчетные значения коэффициента фильтрации k следует принимать равными нормативным.
Примечание. Для портовых сооружений и речных сооружений III и IV классов расчетные значения коэффициентов фильтрации грунтов основания допускается определять по аналогам, а также расчетом, используя другие физико-механические характеристики грунтов.
2.12. Расчетные значения осредненного критического градиента напора Icr,m в основании сооружения с дренажем следует принимать по табл. 3.
Таблица 3
Грунт
Расчетный осредненный критический градиент напора Icr,m
Песок:

мелкий
0,32
средней крупности
0,42
крупный
0,48
Супесь
0,60
Суглинок
0,80
Глина
1,35
Расчетные значения местного критического градиента напора Icr следует определять, используя расчетные методы оценки суффозионной устойчивости грунтов либо путем испытаний грунтов на суффозионную устойчивость в лабораторных или натурных условиях.
Для несуффозионных песчаных грунтов Icr допускается принимать при выходе потока в дренаж 1,0, а за дренажем - 0,3. Для пылевато-глинистых грунтов при наличии дренажа или жесткой пригрузки при выходе на поверхность грунта Icr допускается принимать 1,5, а при деформируемой пригрузке - 2,0.
2.13. Нормативные значения коэффициентов упругой и гравитационной водоотдачи и следует определять в натурных условиях по результатам наблюдений за изменением напоров и уровней воды в инженерно-геологическом элементе основания при изменении напора в определенной точке (например, в опытной скважине).
Расчетные значения коэффициентов и следует принимать равными нормативным.
Примечание. Значения и оснований сооружений II -IV классов допускается определять по результатам испытаний в лабораторных условиях.
ХАРАКТЕРИСТИКИ СКАЛЬНЫХ ГРУНТОВ
2.14. Нормативные значения предела прочности отдельности скального грунта на одноосное сжатие Rt,n и одноосное растяжение Rc,n, а также предела прочности массива скального грунта на смятие Rcs,m,n одноосное растяжение Rt,m,n и одноосное сжатие Rc,m,n следует определять как средние арифметические частных значений этих характеристик, полученных в отдельных испытаниях.
Методы проведения испытаний и обработки результатов для получения частных значений характеристики Rcs,m приведены в рекомендуемом приложении 4.
Частные значения характеристик Rс и Rt рекомендуется определять соответственно методами одноосного сжатия и растяжения образцов отдельностей в лабораторных условиях.
Частные значения характеристик Rc,m и Rt,m следует, как правило, определять экспериментально в полевых условиях. Испытания для определения Rc,m рекомендуется проводить методом одноосного сжатия скальных целиков, а для определения Rt,m - методом отрыва бетонных штампов или скальных целиков по контакту бетон - скала, по массиву или трещинам в условиях одноосного растяжения.
Расчетные значения характеристик прочности и следует определять по формуле (1). При этом коэффициент надежности по грунту для характеристики RII необходимо принимать = 1, а для характеристики RI он должен определяться в соответствии с требованиями ГОСТ 20522-75 при односторонней доверительной вероятности = 0,95.
При обосновании расчетные значения в направлениях, не совпадающих с нормалями к плоскостям трещин, допускается принимать по табл. 4, а в направлениях, совпадающих с нормалями к плоскостям сплошных трещин, принимать равными нулю.
2.15. Нормативные значения характеристик tgи сn массивов скальных грунтов следует определять для всех потенциально опасных расчетных поверхностей или элементарных площадок сдвига по результатам полевых или лабораторных (в том числе модельных) испытаний, проводимых методом среза (сдвига) бетонных штампов или скальных целиков.
Испытания указанными методами и определение по их результатам нормативных значений характеристик tgи сn следует производить для условий, соответствующих всем расчетным случаям в периоды строительства и эксплуатации сооружения.
Нормативные значения характеристик tgи сn должны определяться в соответствии с обязательным приложением 2.
2.16. Расчетные значения характеристик tgи сI скальных грунтов следует вычислять по формуле (1). При этом коэффициенты надежности по грунту следует устанавливать в соответствии с обязательным приложением 2 при односторонней доверительной вероятности = 0,95. Если полученное при этом значение будет более 1,25 или менее 1,05, то его следует принимать соответственно равным 1,25 или 1,05.
Расчетные значения характеристик tgи сII следует принимать равными нормативным.
Примечания: 1. Для определения расчетных значений характеристик tgи сI по результатам испытаний при обосновании можно использовать метод линейной аппроксимации нижней доверительной границы зависимости между нормальными и предельными касательными напряжениями, полученной при = 0,95 с использованием усеченного распределения измеренных величин.
2. При определении расчетных характеристик tgи сI,II по экспериментальным данным необходимо учитывать возможное несоответствие между условиями проведения испытаний и натурными условиями.
3. Для оснований сооружений III и IV классов, а также для оснований сооружений I и II классов на стадии технико-экономического обоснования строительства расчетные значения характеристик tgи сI,II при обосновании допускается принимать по табл. 4 (с использованием аналогов, корреляционных связей и т.д.). Значения tgи сI,II для оснований сооружений I и II классов на стадиях проекта и рабочей документации также при обосновании допускается принимать по табл. 4, если расчеты с использованием этих характеристик не определяют габариты сооружений.
2.17. Нормативные значения характеристик деформируемости массивов скальных грунтов (модуля деформации Еn, коэффициента поперечной деформации , скоростей распространения продольных и поперечных волн и др.) следует определять как средние арифметические частных значений этих характеристик, полученных для данного инженерно-геологического элемента в отдельных испытаниях. Нормативные значения Еn и допускается также определять исходя из корреляционной зависимости между статической (Еn) и динамической(или ) характеристиками, установленной при сопоставлении частных сопряженных значений этих характеристик, полученных в одних и тех же точках массива, расположенных в разных инженерно-геологических элементах исследуемого основания. При этом испытания для получения частных значений Еn и должны проводиться методами статического нагружения массива скального грунта, а для получения частных значений или - динамическими (сейсмоакустическими или ультразвуковыми) методами.
Для оснований сооружений III и IV классов, а также для оснований сооружений I и II классов на стадии технико-экономического обоснования строительства при определении нормативных значений Еn корреляционную зависимость с динамическими характеристиками допускается при обосновании принимать на основе обобщения данных испытаний для аналогичных инженерно-геологических условий.
2.18. Расчетные значения модуля деформации Е, если они используются в расчетах местной прочности основания, должны определяться по формуле (1). При этом коэффициент надежности по грунту , если нормативное значение Еn установлено как среднее арифметическое частных значений, должен определяться в соответствии с требованиями ГОСТ 20522-75 при односторонней доверительной вероятности = 0,85. Из полученных двух значений должно приниматься меньшее. Если значение Еn установлено по корреляционным зависимостям с динамическими показателями, следует принимать = 0,8.
Расчетные значения Е, если они используются в расчетах устойчивости, в расчетах основания по деформациям и в расчетах прочности сооружения, следует принимать равными нормативным.
При обосновании расчетные значения модуля деформации скальных массивов Е допускается определять на основе аналоговых корреляционных связей этой характеристики с характеристиками других свойств - водопроницаемостью, воздухопроницаемостью и др. При этом характеристики других свойств должны быть установлены по результатам испытаний в изучаемом скальном массиве.
Расчетные значения коэффициента поперечной деформации v следует принимать равными нормативным.
При обосновании расчетные значения v массивов скального грунта допускается определять по аналогам.
2.19. Нормативные значения коэффициента фильтрации kn и удельного водопоглощения qn следует определять как средние арифметические значений результатов, полученных при испытаниях, выполненных одинаковым методом в соответствии с ГОСТ 23278-78. В сложных гидрогеологических условиях (резко выраженная анизотропия фильтрационных свойств, карст, неопределенность граничных условий и др.) нормативное значение kn следует определять по результатам испытаний в кусте скважин.
Испытания по определению kn и qn необходимо проводить с учетом напряженного состояния грунта в изучаемой зоне основания.
Расчетные значения коэффициента фильтрации k и удельного водопоглощения q следует принимать равными нормативным.
2.20. Нормативные значения критической скорости движения воды в трещинах (прослойках, тектонических зонах дробления) , как правило, следует определять по результатам суффозионных испытаний заполнителя трещин (прослоек, зон дробления).
Расчетные значения следует принимать равными нормативным.
Для оснований сооружений III и IV классов, а при обосновании - и для оснований сооружений I и II классов расчетные значения допускается определять расчетом в зависимости от геометрических характеристик трещин, вязкости фильтрующейся воды и физико-механических характеристик заполнителя трещин.
Расчетные значения (равные нормативным) критического градиента напора фильтрационного потока в направлении простирания рассматриваемой системы трещин следует определять расчетом в зависимости от геометрических характеристик трещин, вязкости воды и физико-механических характеристик заполнителя трещин.
2.21. Нормативные и расчетные значения коэффициентов упругой и гравитационной водоотдачи и следует определять в соответствии с п. 2.13 только по результатам испытаний в натурных условиях.


Таблица 4


Расчетные значения характеристик tg и скальных грунтов для расчетов



местной прочности по площадкам сдвига, не
устойчивости, физического моделиро-
Устойчивости, физического моделирования и расчетов местной прочности для поверхностей и площадок сдвига в массиве, приуроченных к трещинам, заполненным песчаным и глинистым грунтом, с шириной их раскрытия, мм



приуроченным к трещинам в массиве и к
вания и расчетов местной прочности для поверхностей и
Менее 2
(в том числе сомкнутые)
От 2 до 20
Св.20



контакту бетон- скала
площадок сдвига, приуроченных к контакту бетон-скала; расчетов устойчивости по поверхностям сдвига, не приуроченным к трещинам в массиве

Преимущественно с песчаным заполнителем
Преимущественно с глинистым заполнителем




См.
*4
См.
*5
См.
*6
См.
*7
См.
*6
См.
*7
См.
*6
См.
*7
См.
*6
См.
*7
См.
*6
См.
*7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
Скальные (массивные, крупноблочные, слоистые, плитчатые, очень слабо - и слаботрещиноватые, невыветрелые) с
>50 МПа (500 кгс/см2)
1,8
2,0
(20)
0,95
0,4
(4,0)
0,8
0,15
(1,5)
0,70
0,1
(1,0)
0,6
0,1
(1,0)
0,55
0,05
(0,5)
-0,25
(-2,5)
2
Скальные (массивные, крупноблочные, блочные, слоистые, плитчатые, среднетрещиноватые, слабовыветрелые) с > 50 МПа (500 кгс/см2)
1,5
1,7
(17)
0,85
0,3
(3,0)
0,8
0,15
(1,5)
0,70
0,1
(1,0)
0,6
0,1
(1,0)
0,55
0,5
(5,0)
-0,17
(-1,7)
3
Скальные (массивные, крупноблочные, блочные, слоистые, плитчатые, сильно- и очень сильнотрещиноватые) с Rc= 15-50 МПа (150-500 кгс/см2); скальные (слабовыветрелые, слаботрещиноватые) с Rc = 5-15 Мпа (50-150кгс/см2)
1,3
1,0
(10)
0,80
0,2
(2,0)
0,7
0,1
(1,0)
0,65
0,05
(0,5)
0,55
0,05
(0,5)
0,45
0,02
(0,2)
-0,10
(-1,0)
4
Полускальные (плитчатые, тонкоплитчатые, средне-, сильно- и очень сильнотрещиноватые с Rc < 5 Мпа (50 кгс/см2)
1,0
0,3
(3,0)
0,75
0,15
(1,5)
0,65
0,05
(0,5)
0,56
0,03
(0,3)
0,50
0,03
(0,3)
0,45
0,02
(0,2)
-0,05
(-0,5)
*Rc - нормативные значения прочности отдельностей на одноосное сжатие.
Примечания:1.В графах 5-14 следует принимать = 1,25.
2. Для поверхностей сдвига, приуроченных к прерывистым и кулисообразным трещинам, приведенные в графах 7-14 значения характеристик необходимо умножить на 1,1 а характеристик - на 1,2.
3. Приведенные в табл. 4 характеристики соответствуют водонасыщенному состоянию массива грунта.
4.
5. сII, Мпа(кгс/см2)
6.
7. ,Мпа(кгс/см2)
2.22. Массивы скальных грунтов по степени трещиноватости, водопроницаемости, деформируемости, выветрелости, по нарушению сплошности и показателю качества RQD характеризуются данными, приведенными в рекомендуемом приложении 1.
2.23. По деформируемости и прочности в различных направлениях массивы скальных грунтов следует считать изотропными при коэффициенте анизотропии не более 1,5 и анизотропными при коэффициенте анизотропии более 1,5. Под коэффициентом анизотропии понимается отношение большего значения характеристики к меньшему в двух заданных направлениях.
3. РАСЧЕТ УСТОЙЧИВОСТИ
3.1. Критерием обеспечения устойчивости сооружения, системы сооружение - основание и склонов (массивов) является условие
(3)
где F, R - расчетные значения соответственно обобщенных сдвигающих сил и сил предельного сопротивления или моментов сил, стремящихся повернуть (опрокинуть) и удержать сооружение;
- коэффициент сочетания нагрузок, принимаемый: для основного сочетания нагрузок - 1,0; для особого сочетания нагрузок - 0,9; для сочетаний нагрузок в периоды строительства и ремонта - 0,95;
- коэффициент условий работы, принимаемый по табл. 5;
- коэффициент надежности по степени ответственности сооружений, принимаемый равным 1,25, 1,20, 1,15 и 1,10 соответственно для сооружений I,II,III и IV классов.
Примечания: 1. При расчете устойчивости скальных склонов и откосов по предельным состояниям второй группы и следует принимать равными единице.
2. Устойчивость плотин из грунтовых материалов следует рассчитывать в соответствии с требованиями СНиП 2.06.05-84.

Таблица 5
Типы сооружений и оснований
Коэффициент условий работы
Типы сооружений и оснований
Коэффициент условий работы
Бетонные и железобетонные сооружения на полускальных и нескальных основаниях (кроме портовых сооружений)
1,0
а) приуроченных к трещинам
1,0


б) не приуроченных к трещинам
0,95
То же, на скальных основаниях (кроме арочных плотин и портовых сооружений) для расчетных поверхностей сдвига:

Арочные плотины и другие распорные сооружения на скальных основаниях
0,75


Портовые сооружения
1,15


Откосы и склоны
1,0
Примечание. В необходимых случаях кроме приведенных в табл. 5 коэффициентов принимаются дополнительные коэффициенты условий работы, учитывающие особенности конструкций сооружений и их оснований.

3.2. При определении расчетных нагрузок коэффициенты надежности по нагрузкам следует принимать согласно требованиям СНиП II-50-74.
Примечания: 1. Коэффициенты надежности по нагрузкам следует принимать одинаковыми (повышающими или понижающими) для всех проекций расчетной нагрузки.
2. Bсe нагрузки от грунта (вертикальное давление от веса грунта, боковое давление грунта) следует, как правило, определять по расчетным значениям характеристик грунта , принимая при этом коэффициенты надежности по нагрузкам равными единице.
3.3. Расчеты устойчивости сооружений и грунтовых массивов следует, как правило, производить методами, удовлетворяющими всем условиям равновесия в предельном состоянии.
Допускается применять и другие методы расчета результаты которых проверены опытом проектирования, строительства и эксплуатации сооружений.
В расчетах устойчивости следует рассматривать все физически и кинематически возможные схемы потери устойчивости сооружений, систем сооружение - основание и склонов (массивов).
Примечания: 1. Расчеты следует выполнять для условий плоской или пространственной задачи. При этом условия пространственной задачи принимают, если l < 3b или l < 3h (для шпунтовых сооружений) или когда поперечное сечение сооружения, нагрузки, геологические условия меняются по длине l1 < 3b (< 3h) где l и b - соответственно длина и ширина сооружения, h - высота сооружения с учетом углубления сооружения или шпунта в грунт основания, l1 - длина участка с постоянными характеристиками.
2. В расчетах устойчивости для условий пространственной задачи необходимо учитывать силы трения и сцепления по боковым поверхностям сдвигаемого массива грунта и сооружения. При этом следует, как правило, давление на боковые поверхности принимать равным давлению покоя, определяемому по указаниям СНиП II-55-79.
РАСЧЕТ УСТОЙЧИВОСТИ СООРУЖЕНИЙ НА НЕСКАЛЬНЫХ ОСНОВАНИЯХ
3.4. В расчетах устойчивости гравитационных сооружений на нескальных основаниях следует рассматривать возможность потери устойчивости по схемам плоского, смешанного и глубинного сдвигов. Выбор схемы сдвига в зависимости от вида сооружения, классификационной характеристики основания, схемы загружения и других факторов производится по указаниям пп.3.5, 3.9 и 3.11.
Перечисленные схемы сдвига могут иметь место как при поступательной форме сдвига, так и при сдвиге с поворотом в плане.
Для сооружений, основанием которых являются естественные или искусственные откосы или их гребни, необходимо также рассматривать схему общего обрушения откоса вместе с расположенным на нем сооружением.
3.5. Расчет устойчивости гравитационных сооружений (кроме портовых), основания которых сложены песчаными, крупнообломочными, твердыми и полутвердыми пылевато-глинистыми грунтами, следует производить только по схеме плоского сдвига при выполнении условия
(4)
В случаях, если основания сложены туго- и мягкопластичными пылевато-глинистыми грунтами, кроме условия (4) следует выполнять условия:
(5)
(6)
В формулах (4) - (6) :
- число моделирования;
- максимальное нормальное напряжение в угловой точке под подошвой сооружения (с низовой стороны);
b - размер стороны (ширина) прямоугольной подошвы сооружения, параллельной сдвигающей силе (без учета длины анкерного понура);
- удельный вес грунта основания, принимаемый ниже уровня воды с учетом ее взвешивающего действия;
N0 - безразмерное число, принимаемое для плотных лесков равным 1, для остальных грунтов - равным 3. Для всех грунтов оснований сооружений I и II классов N0, как правило, следует уточнять по результатам экспериментальных исследований методом сдвига штампов в котлованах сооружений;
tg - расчетное значение коэффициента сдвига;
tg( с1 - то же, что в п. 2.7;
- среднее нормальное напряжение по подошве сооружения;
- коэффициент степени консолидации;
k - коэффициент фильтрации;
е - коэффициент пористости грунта в естественном состоянии;
t0 - время возведения сооружения;
а - коэффициент уплотнения;
- удельный вес воды;
h0 - расчетная толщина консолидируемого слоя, принимаемая для сооружения с шириной подошвы b, на части которой bd расположен дренаж, равной:
а) для однослойного основания:
при наличии водоупора, залегающего на глубине h1 (h1 Нc; Нc - см. п. 7.9),
(7)
при залегании в основании дренирующего слоя на глубине h1 (h1 Нc)
(8)
б) для двухслойного основания с толщинами слоев h1 и h2:
при наличии водоупора и при k1k2 (h1 + h2 Нc)
(9)
при наличии дренирующего слоя на глубине h1 + h2 (h1 + h2 Нc)
(10)
Примечание. Указания настоящего пункта не распространяются на случаи, когда особенности конструкции сооружения и геологического строения основания, а также распределение нагрузок предопределяют глубинный сдвиг.
3.6. При расчете устойчивости сооружения по схеме плоского сдвига за расчетную поверхность сдвига следует принимать:
при плоской подошве сооружения - плоскость опирания сооружения на основание с обязательной проверкой устойчивости по горизонтальной плоскости сдвига, проходящей через верховой край подошвы;
при наличии в подошве сооружения верхового и низового зубьев: при глубине заложения верхового зуба, равной или большей низового, - плоскость, проходящую через подошву зубьев, а также горизонтальную плоскость, проходящую по подошве верхового зуба; при глубине заложения низового зуба более глубины заложения верхового зуба - горизонтальную плоскость, проходящую по подошве верхового зуба (при этом все силы следует относить к указанной плоскости, за исключением пассивного давления грунта со стороны нижнего бьефа, которое надлежит определять по всей глубине низового зуба);
при наличии в основании сооружения каменной постели - плоскости, проходящие по контакту сооружения с постелью и постели с грунтом; при наличии у каменной постели заглубления в грунт следует рассматривать также наклонные плоскости или ломаные поверхности, проходящие через постель.
3.7. При расчете устойчивости сооружений по схеме плоского сдвига (без поворота) при горизонтальной плоскости сдвига R = Rpl и F в условии (3) следует определять по формулам:

(11)
(12)

где Rpl - расчетное значение предельного сопротивления при плоском сдвиге;
Р - сумма вертикальных составляющих расчетных нагрузок (включая противодавление);
tg,с1 - характеристики грунта по расчетной поверхности сдвига, определяемые по указаниям разд. 2;
- коэффициент условий работы, учитывающий зависимость реактивного давления грунта с низовой стороны сооружения от горизонтального смещения сооружения при потере им устойчивости, принимаемый по результатам экспериментальных исследований; при их отсутствии значение следует принимать: для всех видов сооружений, кроме портовых. - 0,7, для портовых - 1;
, - соответственно расчетные значения горизонтальных составляющих силы пассивного давления грунта с низовой стороны сооружения и активного давления грунта с парковой стороны, определяемые по указаниям СНиП II-55-79; при определении , ниже уровня воды следует учитывать ее взвешивающее действие на грунт, а также влияние фильтрационных сил;
Аg - площадь горизонтальной проекции подошвы сооружения, в пределах которой учитывается сцепление;
Rg - горизонтальная составляющая силы сопротивления свай, анкеров и т. д.;
F - расчетное значение сдвигающей силы;
- суммы горизонтальных составляющих расчетных значений активных сил, действующих соответственно со стороны верховой и низовой граней сооружения, за исключением активного давления грунта.
Примечания: 1.В случае наклонной плоскости сдвига при определении Rpl и F силы проектируются на эту плоскость и на нормаль к ней.
2. Для вертикально- и наклонно-слоистых оснований tg(и с1 следует определять по обязательному приложению 5 как средневзвешенные значения характеристик грунтов всех слоев с учетом перераспределения нормальных контактных напряжений между слоями пропорционально их модулям деформации.
3. Под низовой стороной сооружения понимается та, в направлении которой проверяется возможность сдвига.
4. Для портовых сооружений I класса величины tg(и с1 по контакту сооружения с каменной постелью следует определять по результатам экспериментальных исследований. Для портовых сооружений II-IV классов, а также I класса на стадии технико-экономического обоснования строительства допускается принимать по контакту сооружение - каменная наброска - tg = 0,6, с1 = 0, по поверхности сдвига внутри каменной наброски - tg = 0,85, с1 = 0.
5. При наличии постели под сооружением пассивное давление грунта, как правило, следует определять только ниже подошвы сооружения с учетом веса вышележащего грунта.
3.8. В случае, если расчетная сдвигающая сила F приложена с эксцентриситетом в плоскости подошвы еF , расчет устойчивости сооружений следует производить по схеме плоского сдвига с поворотом в плане ( l и b - размеры сторон прямоугольной подошвы сооружения). Эксцентриситет еF и силу предельного сопротивления сдвигу при плоском сдвиге с поворотом Rpl,t следует определять по указаниям, приведенным в рекомендуемом приложении 6.
3.9. Расчет устойчивости сооружений по схеме смешанного сдвига следует производить для сооружений на однородных основаниях во всех случаях, если не соблюдаются условия, приведенные в п. 3.5. При этом сопротивление основания сдвигу следует принимать равным сумме сопротивлений на участках плоского сдвига и сдвига с выпором (черт. 1). Сила предельного сопротивления при расчете устойчивости сооружений по схеме смешанного сдвига Rcom при поступательной форме сдвига определяется по формуле
(13)
где - то же, что в формуле (5);
tg(и с1
b1,b2 - расчетные значения ширины участков подошвы сооружения, на которых происходят сдвиг с выпором и плоский сдвиг;
- предельное касательное напряжение на участке сдвига с выпором, определяемое в соответствии с указаниями рекомендуемого приложения 7;
l - размер стороны прямоугольной подошвы сооружения, перпендикулярной сдвигающей силе.

Черт. 1. Схема к расчету несущей способности основания и устойчивости сооружения при смешанном сдвиге
аб - участок плоского сдвига; бв - участок сдвига с выпором; бвгдб- зона выпора
Значения b1 следует определять в зависимости от ?max (с низовой стороны) по черт. 2. При эксцентриситете еp нормальной силы Р в сторону нижнего бьефа в формуле (13) вместо b, b1 и b2 следует принимать b?, b1? и b2? (где b' = b - 2еp, а ); эксцентриситет в сторону верхнего бьефа в расчетах не учитывается.
Для портовых сооружений расчеты устойчивости по схеме смешанного сдвига допускается не производить.

Черт. 2. Графики для определения ширины участка подошвы сооружения b1, на котором происходит сдвиг с выпором грунта основания
а - для грунтов с коэффициентом сдвига tg> 0,45; б - то же, при tg?I<0,45; - среднее нормальное напряжение в подошве сооружений, при котором происходит разрушение основания от одной вертикальной нагрузки ( определяется по рекомендуемому приложению 5; ).
3.10. При смешанном сдвиге с поворотом в плане предельная сдвигающая сила принимается равной , где - коэффициент, определяемый по указаниям рекомендуемого приложения 6, - то же, что в формуле (13).
3.11. Расчет устойчивости сооружений по схеме глубинного сдвига следует производить:
а) для всех типов сооружений, несущих только вертикальную нагрузку, а для портовых сооружений - независимо от характера нагрузки;
б) при невыполнении требований п. 3.5 для сооружений, несущих вертикальную и горизонтальную нагрузки и расположенных на неоднородных основаниях.
3.12. Расчет устойчивости гравитационных сооружений (кроме портовых) по схеме глубинного сдвига допускается производить по рекомендуемому приложению 7.
Расчет устойчивости портовых сооружений, как правило, следует производить двумя методами, исходя из поступательного перемещения сдвигаемого массива грунта вместе с сооружением по ломаным плоскостям сдвига и из вращательного их перемещения по круглоцилиндрической поверхности сдвига в соответствии с рекомендуемым приложением 8, а при специальном обосновании - одним из указанных методов.
При использовании обоих методов определяющими являются результаты расчета устойчивости по тому методу, по которому условие (3) показывает меньшую надежность сооружения.
3.13. При расчете устойчивости сооружений на основаниях, сложенных пылевато-глинистыми грунтами со степенью влажности Sr0,85 и коэффициентом степени консолидации < 4 (см. п. 3.5), следует принимать характеристики грунта tgи сI, соответствующие его степени консолидации, или вводить в расчет поровое давление (определяемое экспериментальным или расчетным путем) при характеристиках грунта, соответствующих его стабилизированному состоянию.
РАСЧЕТ УСТОЙЧИВОСТИ СООРУЖЕНИЙ НА СКАЛЬНЫХ ОСНОВАНИЯХ
3.14. Расчеты устойчивости сооружений на скальных основаниях, скальных откосов и склонов следует выполнять по схеме сдвига по плоским или ломаным расчетным поверхностям. Для бетонных и железобетонных сооружений на скальных основаниях следует также рассматривать схему предельного поворота (опрокидывания) с разрушением основания под низовой гранью сооружения. При этом определяющими являются результаты расчета по той схеме, которая по условию (3) показывает меньшую надежность сооружения (откоса, склона).
При плоской расчетной поверхности сдвига следует учитывать две возможные схемы нарушения устойчивости:
поступательный сдвиг;
сдвиг с поворотом в плане.
При ломаной расчетной поверхности сдвига следует учитывать три возможные расчетные схемы:
сдвиг вдоль ребер ломаной поверхности (продольный);
сдвиг поперек ребер ломаной поверхности (поперечный);
сдвиг под углом к ребрам ломаной поверхности сдвига (косой).
Выбор схемы нарушения устойчивости сооружения или откоса (склона) и определение расчетных поверхностей сдвига следует производить, используя данные анализа инженерно-геологических структурных моделей, отражающих основные элементы трещиноватости скального массива (ориентировку, протяженность, мощность, шероховатость трещин, их частоту и т.д.) и наличие ослабленных прослоек и областей.
3.15. При расчете устойчивости сооружений и скальных откосов (склонов) по схеме поступательного и продольного сдвигов величины, входящие в условие (3), необходимо определять по формулам:
; (14)
, (15)
где F, R - то же, что в формуле (3);
Т - активная сдвигающая сила (проекция равнодействующей расчетной нагрузки на направление сдвига);
Pi - равнодействующая нормальных напряжений (сил), возникающих на i-м участке поверхности сдвига от расчетных нагрузок;
Rg - сила сопротивления, ориентированная против направления сдвига, возникающая от анкерных усилий и т.д.;
п - число участков поверхности сдвига, назначаемое с учетом неоднородности основания по прочностным и деформационным свойствам;
,- расчетные значения характеристик скальных грунтов для i-го участка расчетной поверхности сдвига, определяемые в соответствии с требованиями п. 2.16;
Ai - площадь i-го участка расчетной поверхности сдвига;
Ei - расчетная сила сопротивления упорного массива (обратной засыпки), определяемая по указаниям п. 3.16.
3.16. Расчетное значение силы сопротивления упорного массива или обратных засыпок следует определять по формуле
, (16)
где - расчетное значение силы пассивного сопротивления.
Для обратных засыпок и упорных массивов без выраженных поверхностей ослабления определяется по указаниям СНиП II-55-79. Для упорного массива, содержащего поверхности ослабления, по которым данный массив может быть сдвинут, значение следует определять без учета характеристик tgи с по упорной грани по формуле
(17)
где Q - вес призмы выпора;
А - площадь поверхности сдвига призмы выпора;
- угол наклона поверхности сдвига (плоскости ослабления) призмы выпора к горизонту;
,- расчетные значения характеристик грунтов по поверхности сдвига (выпора);
- коэффициент условий работы, принимаемый в зависимости от соотношения модулей деформации грунта упорного массива (обратной засыпки) Еs и основания Ef :
при 0,8 = 0,7;
при 0,1 = ;
при 0,8 >> 0,1 определяется линейной интерполяцией;
Еr - давление покоя, определяемое по формуле
Er (18)
где - удельный вес грунта упорного массива;
v - коэффициент поперечной деформации грунта упорного массива;
h - высота упора на контакте с сооружением или откосом.
Примечания: 1. Сопротивление упорного массива следует учитывать только в случае обеспечения плотного контакта сооружения или откоса с упорным массивом,
2. Сила Еp,d принимается горизонтальной независимо от наклона упорной грани массива.
3.17. При расчете устойчивости сооружений и скальных откосов (склонов) по схеме сдвига с поворотом в плане следует учитывать возможное уменьшение сопротивления сдвигу R против значений сил, устанавливаемых в предположении поступательного движения. При этом корректировку значений R допускается производить в соответствии с требованиями рекомендуемого приложения 6.
3.18. Расчеты устойчивости сооружений и скальных откосов (склонов) по схеме поперечного сдвига следует производить, как правило, расчленяя призму обрушения (сдвига) на взаимодействующие элементы.
Расчленение призмы обрушения (сдвига) на элементы производится в соответствии с характером поверхности сдвига, структурой скального массива призмы и распределением действующих на нее сил. В пределах каждого элемента по поверхности сдвига характеристики прочности скального грунта принимаются постоянными.
Выбор направлений расчленения призмы обрушения на элементы и расчетного метода следует производить с учетом геологического строения массива. При наличии пересекающих призму обрушения (сдвига) поверхностей ослабления, по которым возможно достижение предельного равновесия призмы, плоскости раздела между элементами следует располагать по этим поверхностям ослабления.
3.19. Расчеты устойчивости по схеме косого сдвига следует выполнять в тех случаях, когда направление смещения массива не совпадает с направлением ребра (ребер) пересечения плоскостей сдвига, например, при расчетах устойчивости береговых упоров арочных плотин и подобных массивов.
3.20. При расчетах устойчивости бетонных сооружений по схеме предельного поворота (опрокидывания) следует проверять возможность потери бетонным сооружением устойчивости вследствие нарушения прочности основания на смятие под низовой гранью сооружения при его повороте или наклоне, вызванном действием опрокидывающих сил. При этом необходимо выполнять условие
(19)
где Мt, Мr - суммы моментов сил, стремящихся опрокинуть и удержать сооружение, определяемые в соответствии с методом, изложенным в рекомендуемом приложении 4;
- коэффициент условий работы, принимаемый равным 1,0;
- то же, что в формуле (3).
3.21. Для оценки устойчивости сооружений на скальных основаниях и скальных откосов, относимых к I классу, при сложных инженерно-геологических условиях в дополнение к расчету, как правило, следует проводить исследования на моделях.
4. ФИЛЬТРАЦИОННЫЕ РАСЧЕТЫ ОСНОВАНИЙ
4.1. При проектировании основания гидротехнического сооружения необходимо обеспечивать фильтрационную прочность грунтов основания, устанавливать допустимые по технико-экономическим показателям фильтрационные расходы и противодавление фильтрующейся воды на подошву сооружения. При этом также надлежит определять:
форму свободной поверхности фильтрационного потока (депрессионной поверхности) и местоположения участков его высачивания;
распределение напора фильтрационного потока главным образом вдоль подземного контура сооружения, на участках его разгрузки и в местах сопряжения грунтов, отличающихся фильтрационными свойствами и структурой порового пространства;
фильтрационный расход на характерных участках основания;
силовое воздействие фильтрационного потока на массив грунта основания;
общую и местную фильтрационную прочность грунтов в основании, причем общую фильтрационную прочность следует оценивать лишь для нескальных грунтов основания, а местную - для всех классов грунтов.
4.2. Характеристики фильтрационного потока следует определять путем его моделирования на физических или математических фильтрационных моделях основания с использованием, как правило, моделей (схем) основания, отражающих геологическую структуру грунтового массива выделением наиболее характерных по водопроницаемости и суффозионной устойчивости грунтов областей, которые попадают в активную область фильтрационного потока. Границы этих областей следует определять предварительными расчетами, исходя из намеченных размеров и конфигурации подземного контура сооружения.
4.3. Критерием обеспечения общей фильтрационной прочности нескального основания является условие
, (20)
где - расчетное значение осредненного критического градиента напора, принимаемое по п. 2.12;
- коэффициент надежности по степени ответственности сооружения, принимаемый по п. 3.1.
Значение для оснований сооружений I и II классов следует определять по методу удлиненной контурной линии. В отдельных случаях значения допускается определять и другими приближенными методами.
4.4. Местную фильтрационную прочность нескального основания необходимо определять только в следующих областях основания:
в области выхода (разгрузки) фильтрационного потока из толщи основания в нижний бьеф, дренажное устройство и т. п.,
в прослойках суффозионно-неустойчивых грунтов;
в местах с большим падением напора фильтрационного потока, например, при обтекании подземных преград;
на участках контакта грунтов с существенно разными фильтрационными свойствами и структурой. Критерием обеспечения местной фильтрационной прочности нескального основания является условие
(21)
где- местный градиент напора в рассматриваемой области основания, определяемый методами, указанными в. п. 4.2;
- местный критический градиент напора, определяемый по п. 2.12.
4.5. Критериями обеспечения местной фильтрационной прочности скальных оснований являются условие (21), в котором заменяется на и условие
(22)
где - средняя скорость движения воды в трещинах массива основания;
- скорость фильтрации воды в массиве в направлении простирания выделенной системы трещин;
nj - расчетная пустотность массива, определяемая наличием в нем полых трещин той же системы при доверительной вероятности их раскрытия 0,95;
- критическая скорость движения воды в трещинах, определяемая по п. 2.20;
- критический градиент напора в направлении простирания рассматриваемой системы трещин, определяемый по п. 2.20.
4.6. Проектирование подземного контура напорных сооружений должно выполняться в соответствии с требованиями СНиП 2.06.05-84 и СНиП 2.06.06-85. При выборе системы дренажа и противофильтрационных устройств в основании проектируемого сооружения необходимо также учитывать условия его эксплуатации, инженерно-геологические условия и требования по охране окружающей среды в части подтопления, заболачивания прилегающей территории, активизации карстово-суффозионных процессов и т. п.
4.7. При проектировании противофильтрационной завесы в нескальном основании следует принимать следующие критические градиенты напора:
в инъекционной завесе в гравийных и галечниковых грунтах - 7,5; в песках крупных и средней крупности - 6,0 и в мелких песках - 4,0;
в завесе, сооружаемой способом "стена в грунте" в грунтах с коэффициентами фильтрации до 200 м/сут, в зависимости от материала и длительности ее эксплуатации - по табл. 6.
Таблица 6
Материал завесы
Критический градиент напора в завесе
Бетон
180
Глиноцементный раствор
125
Комовая глина
40
Заглинизированный грунт
25
Примечание. Для временных завес критические градиенты напора допускается увеличивать на 25 %.
4.8. При проектировании противофильтрационной (цементационной) завесы в скальном основании следует принимать критический градиент напора в завесе в зависимости от удельного водопоглощения в пределах завесы qс по табл. 7.
В случае, когда завеса (одна или в сочетании с другими противофильтрационными устройствами) также защищает от выщелачивания содержащиеся в основании растворимые грунты, допустимое удельное водопоглощение следует обосновывать расчетами и экспериментальными исследованиями.
Проницаемость противофильтрационной завесы должна быть ниже проницаемости грунта основания не менее чем в 10 раз.

Таблица 7
Удельное водопоглощение скального грунта в завесе qс,
л/(мин м2)
Критический градиент напора в завесе

Менее 0,01
35
0,01 - 0,05
25
0,05 - 0,1
15
4.9. Для предотвращения выпора грунта на участках, где фильтрационный поток с градиентами напора, близкими к единице, выходит на поверхность основания, в проекте необходимо предусматривать проницаемую пригрузку или разгрузочный дренаж. Материал пригрузки должен подбираться по принципу обратного фильтра для защиты грунта основания от контактной суффозии.
Для изотропно-проницаемого и однородного основания необходимая толщина пригрузки (при отсутствии давления на нее сверху) определяется по формуле
(23)
где h - разность пьезометрических уровней для расчетной глубины z в толще основания и для поверхности грунта основания (z соответствует заглублению низового шпунта или зуба).
- удельный вес грунта и пригрузки с учетом в